Abstract

Experimental aeroacoustics is concerned with the estimation of acoustic source power distributions, which are for instance caused by fluid structure interactions on scaled aircraft models inside a wind tunnel, from microphone array measurements of associated sound pressure fluctuations. In the frequency domain aeroacoustic sound propagation can be modeled as a random source problem for a convected Helmholtz equation. This article is concerned with the inverse random source problem to recover the support of an uncorrelated aeroacoustic source from correlations of observed pressure signals. We show that a variant of the factorization method from inverse scattering theory can be used for this purpose. We also discuss a surprising relation between the factorization method and a commonly used beamforming algorithm from experimental aeroacoustics, which is known as Capon’s method or as the minimum variance method. Numerical examples illustrate our theoretical findings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call