Abstract
Porphyrin nanostructures are widely used in the field of visible light catalysis due to their superior light absorption properties and good controllability in size, shape and function. In this paper, the development of various morphologies in three types of porphyrins with three different phenyl substituents (designated as H2TTP, H2TPP and H2TCPP, respectively) is demonstrated. The formation mechanism proposed was based on the evolution of morphology as functions of molecular structure and solvent mixture. These nano/micro assemblies are well characterized by SEM, IR, UV-vis, X-ray diffraction and photoelectric conversion. The photocatalytic oxidation reactions under visible light irradiation of 1,5-dihydroxynaphthalene (DHN) in water is utilized to evaluate the photoactivity of the as-prepared porphyrin assemblies. The photocatalytic results indicate that the obtained porphyrin assemblies exhibit enhanced visible-light photocatalytic activity. In addition, the photocatalyst is easy to separate and recover, and has good stability. The possible photocatalytic degradation mechanism of DHN by the porphyrins nanopolyhedron photocatalyst was also proposed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.