Abstract

A polymer waveguide was fabricated to amplify the evanescent optical field for biosensing. The structure of waveguide was designed to propagate a normal single mode at the input and output regions for low loss beam coupling and propagation. A sensing region was formed in the middle of the waveguide to activate the evanescent mode and to induce high birefringence by depositing a thin dielectric film with a high refractive index on a single mode waveguide. A polymer waveguide with the dimensions of 7 μm-width and 2.5 μm-thickness was fabricated by photolithography and dry-etching. The active region of the TiO 2 thin film was fabricated with the dimensions of 20 mm-length, 20 nm-thickness and 2 mm-tapered tail. A polarimetric interference technique was used to evaluate the evanescent waveguide biosensor, and biomaterial such as glycerol was tested. The sensitivity of the sensor increased with increasing TiO 2 film thickness. For the fabricated waveguide with a 20 nm-thick TiO 2 film, the measured index change to the lead phase variation of 2 π was 1.8 × 10 −4.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.