Abstract

Electroluminescent devices based on organic semiconductors have attracted significant attention owing to their promising applications in flat-panel displays. The conventional display pixel consisting of side-by-side arrayed red, green and blue subpixels represents the mature technology but bears an intrinsic deficiency of a low pixel density. Constructing an individual color-tunable pixel that comprises vertically stacked subpixels is considered an advanced technology. Although color-tunable organic light-emitting diodes (OLEDs) have been fabricated using the vacuum deposition of small molecules, the solution processing of conjugated polymers would enable a much simpler and inexpensive manufacturing process. Here we present the all-solution processing of color-tunable OLEDs comprising two vertically stacked polymer emitters. A thin layer of highly conducting and transparent silver nanowires is introduced as the intermediate charge injection contact, which allows the emission spectrum and intensity of the tandem devices to be seamlessly manipulated. To demonstrate a viable application of this technology, a 4-by-4 pixelated matrix color-tunable display was fabricated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.