Abstract

This paper fabricates a carbon nanotube (CNT ) film-reinforced mesophase pitch-based carbon (CNTF/MPC) nanocomposite by using a hot-pressing carbonization method. During the carbonization, the stacked aromatic layers tended to rearrange into amorphous carbon, and subsequently generated crystalline carbon in the matrix. The continuous entangled CNT networks were efficiently densified by the carbon matrix though optimized external pressure to obtain the high-performance nanocomposites. The CNTF/MPC@1300 displayed a stable electrical conductivity up to 841 S/cm at RT-150 °C. Its thermal conductivity in the thickness direction was 1.89 W/m∙K, an order of magnitude higher than that of CNT film. Moreover, CNTF/MPC@1300 showed a mass retention of 99.3% at 1000 °C. Its tensile strength was 2.6 times the CNT film and the tensile modulus was two orders of magnitude higher. Though the CNTF/MPC nanocomposites exhibited brittle tensile failure mode, they resisted cyclic bending without damage. The results demonstrate that the CNTF/MPC nanocomposite has potential application in multi-functional temperature resistance aerospace structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.