Abstract

This study used nano-oxidation lithography to create oxidized circular nanostructures on a silicon wafer with a native oxide layer (NOL). We also investigated the impact of wet etching on the size of circular oxidized nanostructures and examined how the method and duration of preservation affect them. Experimental results show that the height and width of oxidized circular nanostructures increase proportionally with applied voltage. After wet etching, an increase in applied voltage resulted in a marked increase in the width of the circular nanostructures, a decrease in the inner diameter, and little variation in height. We further demonstrated that in a moist environment, the oxidation process continues, resulting in a further increase in height and width. During the initial stages of preservation, these changes occurred rapidly; however, the increase was negligible after 30 days. We propose the concept of reaction area (RA) ratio to explain the above phenomenon and provide evidence to support these claims. Our results led us to a simple and yet effective method of preserving oxidized circular nanostructures, called the electrostatic patch preservation (EPP) method, to overcome problems associated with changes in size occurring during the preservation of silicon nanostructure molds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call