Abstract

A conformai mapping of the exterior of the unit circle to the exterior of a region of the complex plane determines the Faber polynomials for that region. These polynomials are of interest in providing near-optimal polynomial approximations in a variety of contexts, including the construction of semi- iterative methods for linear equations. The relevant conformai map for an annular sector {z : R < \z < 1, 0 < |argz| < it), with 0 < 9 < it, is derived here and a recurrence relation is established for the coefficients of its Laurent expansion about the point at infinity. The recursive evaluation of scaled Faber polynomials is formulated in such a way that an algebraic manipulation package may be used to generate explicit expressions for their coefficients, in terms of two parameters which are determined by the interior angle of the annular sector and the ratio of its radii. Properties of the coefficients of the scaled Faber polynomials are established, and those for polynomials of degree < 15 are tabulated in a Supplement at the end of this issue. A simple closed form is obtained for the coefficients of the Faber series for 1/z . Known results for an interval, a circular arc, and a circular sector are reproduced as special cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.