Abstract

To bear harsh environmental threats, plants have developed complex protection mechanisms involving phytohormones, counting abscisic acid (ABA). The function of the F-Box family containing the Domain of Unknown Function 295 (DUF295) has not yet been comprehensively characterized in Arabidopsis (Arabidopsis thaliana). In this study, we evaluated the function of a putative member of the F-Box/DUF295 family in Arabidopsis, F-box/DUF295 Brassiceae specific 2 (FDB2). We found that FDB2 expression was suppressed by ABA and abiotic stresses. FDB2 overexpression (OE) reduced ABA sensitivity during seed germination and seedling growth, but enhanced ABA-sensitivity of seed germination and seedling growth in fdb2 mutants was scored. When treated with ABA, expressions of ABI3, ABI4 and ABI5 showed decreased in OE lines but increased in fdb2 mutants. In addition, ABA-induced FDB2 degradation exhibited sensitive to MG132, suggesting that FDB2 degradation by ABA might be mediated by the ubiquitin-26S proteasome system. Moreover, ABA-induced significant over-accumulation of reactive oxygen species (ROS) at the root tips of fdb2 mutants was observed, this phenomenon was correlated to reduced activities of a set of ROS scavengers in fdb2 mutants relative to Col-0. In summary, our results suggest that Arabidopsis FDB2 is involved in ABA-mediated inhibition of seed germination, seedling growth including modulation of ROS homeostasis in roots.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.