Abstract
Members of the Euphausiacea (“krill”) generate bioluminescence using light organs, the so-called photophores, including one pair associated with the eyestalks, two pairs on the thoracic segments, and four unpaired photophores on the pleon. The photophores generate light via a luciferin–luciferase type of biochemical reaction in light-emitting cells comprised in a photophore compartment called “lantern”. The behavioral significance of bioluminescence in krill is discussed controversially, and possible functions include a defensive function, camouflage by counter-shading, and intra-specific communication. Light production of all krill photophores is controlled by hormonal and neuronal pathways but our knowledge about the nature of these pathways is still rudimentary. Here, we provide a detailed description of the eyestalk photophore's histology in Northern krill Meganyctiphanes norvegica, and used immunohistochemistry combined with confocal laser-scan microscopy to explore this organ's serotonergic innervation. Furthermore, we provide evidence that the photophore is innervated by a distinct photophore nerve that originates from a specialized cluster of ca. 30 highly modified ommatidia at the dorsal rim of the compound eye that are optically isolated from the other ommatidia. Our findings suggest the compound eye – photophore link as a major anatomical axis to adjust the photophore activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.