Abstract

Construction of a schematic eye indicates that the eye of Spheniscus humboldti is aquatic in design. The lens has a power of 100 dioptres (D) while (in air) the cornea has a power of 29 D. In air, the eye is myopic (approximately 28 D) but in water it is emmetropic. Minimum pupil size would seem insufficient to allow the pupil to function as a stenopaic aperture and increase depth of focus sufficiently to overcome the eye's aerial myopia. Entry into water reduces maximum image brightness by approximately three times. In air, the maximum width of the retinal binocular field is 45 degrees and this occurs approximately 10 degrees above the line of the bill. The bill intrudes into the retinal field and binocular field width in the plane containing the bill and the optic axes is 28 degrees. The vertical extent of the binocular field is 125 degrees. In the plane containing the optic axes the cyclopean field equals 282 degrees and the optic axes diverge by 116 degrees. In this plane the mean uniocular field is 155 degrees with the temporal hemifield approximately 11 degrees larger than the nasal hemifield. Entry into water reduces the widths of the visual fields such that maximum binocular field width is only 17 degrees and the vertical extent is reduced to about 80 degrees. Binocular vision is lost in the plane of the bill, and the uniocular retinal field is reduced by 32 degrees and the cyclopean field by 36 degrees.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.