Abstract

We derived the three-dimensional velocities of individual stars in a sample of 62 Galactic globular clusters using proper motions from the second data release of the Gaia mission together with the most comprehensive set of line-of-sight velocities with the aim of investigating the rotation pattern of these stellar systems. We detect the unambiguous signal of rotation in 15 clusters at amplitudes which are well above the level of random and systematic errors. For these clusters, we derived the position and inclination angle of the rotation axis with respect to the line of sight and the overall contribution of rotation to the total kinetic energy budget. The rotation strengths are weakly correlated with the half-mass radius, the relaxation time and anticorrelated with the destruction rate, while no significant alignment of the rotation axes with the orbital poles has been observed. This evidence points toward a primordial origin of the systemic rotation in these stellar systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.