Abstract

The three-dimensional finite element (FE) numerical simulation of extrusion forming of AZ31 matrix magnesium alloy was analyzed in four extrusion velocities. The flow pattern and the influence of extrusion velocity for the temperature, the distribution of effective stress and strain of composites were analyzed. The results showed that, when the extrusion velocity increased from 1.5 mm/s to 4.5 mm/s, the heat flux under steady extrusion state would change from-2.77e+004 (Wm2) to 1.14e+005 (Wm2), meanwhile the effective stress and strain increased at first and then decreased, and the average effective strain and stress value were smallest when v = 4.5 mm/s. It showed that along with the increase of the extrusion velocity, the rise degree of the temperature increased and the distribution of the effective stress and strain tended to be more evenly. Finally, the best extrusion technical parameters of AZ31 magnesium alloy were determined, that was the extrusion velocity was equal to 4.5 mm/s when extrusion ratio was 25 and extrusion temperature was 350 °C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.