Abstract

Nowadays, the extremely-low-frequency electromagnetic field (ELF-EMF) is recognized as environmental pollution. The data indicate that the ELF-EMF may affect factors related to epigenetic regulation and alter important biological processes in the uterus. The impact of the ELF-EMF on apoptosis and oxidative-stress-related genes has not been documented in porcine endometrium. This raises the question of whether the exposure to the ELF-EMF can induce apoptosis and/or oxidative stress in the endometrium of pigs during the peri-implantation period. Porcine endometrial slices (100 ± 5 mg) collected (n = 5) during the peri-implantation period were treated in vitro with ELF-EMF at a frequency of 50 Hz and flux density of 8 × 104 mG for 2 h. To determine the effect of ELF-EMF on apoptosis and oxidative stress in the endometrium, CASP3, CASP7, CIDEB, GADD45G, NOS1, NOS2, NOS3, and TP53I3 mRNA transcript were analyzed using real-time PCR, and protein abundance of CASP3, CASP7 using Western blot, and eNOS using ELISA were determined. Moreover, CASP3/7 and NOS activity was analyzed using flow cytometry and colorimetry, respectively. The decreased CASP7 and increased NOS3 mRNA transcript and protein abundance in ELF-EMF-treated endometrium were observed. Moreover, CIDEB, GADD45G, and TP53I3 mRNA transcript abundance was increased. Only p ≤ 0.05 was considered a statistically significant difference. The documented alterations indicate the potential of the ELF-EMF to affect apoptosis and generate oxidative stress in the endometrium. The insight into observed consequences documents for the first time the fact that the ELF-EMF may influence endometrial cell proliferation, angiogenesis, and/or tissue receptivity during peri-implantation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call