Abstract

This paper analyzes the optimal of constant proportion index portfolio strategies. They are also called passive strategies which are becoming more common in Russia and abroad. They are significantly cheaper to implement than active strategies. In addition, as practice shows, in the long term they are more profitable and less risky. The main problem in these strategies is the choice of the proportions in which the investor allocates his capital between risky and risk-free assets. In constant proportion index portfolio the weight of risk asset remains constant throughout investment period. For this purpose, the investor with a certain frequency restores the desired balance between risky and risk-free assets. Each period at the beginning of which such recovery occurs is called the re-balancing period. In the case of strategies with index portfolios, risky assets are the shares of the index fund, and risk-free assets are the deposits in reliable bank or government bonds. According on the daily value of units of these funds and the annual interest rate for the 11-year period, using a specially developed program optimal weight index funds in the portfolios has been found. Parameters of the analyzed portfolios are: length of the investment period (from one year to 10 years) and the frequency of weight rebalancing (month, quarter, year). The sequence of optimal weights and the corresponding optimum yield for consecutive investment periods with a specified frequency of re-balancing were determined for each fund. It was found that in almost all cases, the optimal weights of fund equals the extreme values 0 or 1. Also, the frequencies of these values in the selected sequence is about the same for all funds. This empiric fact can be conventionally called the principle of extremeness or “all or nothing” principle.

Highlights

  • This paper analyzes the optimal of constant proportion index portfolio strategies

  • In constant proportion index portfolio the weight of risk asset remains constant throughout investment period

  • In the case of strategies with index portfolios, risky assets are the shares of the index fund, and risk-free assets are the deposits in reliable bank or government bonds

Read more

Summary

ЭКСТРЕМАЛЬНОСТЬ ВЕСОВ В ИНДЕКСНЫХ ПОРТФЕЛЯХ В СТРАТЕГИЯХ ПОСТОЯННОЙ ПРОПОРЦИИ

Ключевые слова: пассивное инвестирование, стратегии постоянной пропорции, индексы, индекс ММВБ, индексные портфели, оптимальные веса. Такие стратегии систематически реализуют так называемые индексные фонды, аккумулирующие средства инвесторов (вкладчиков фонда) и инвестирующие их в широко диверсифицированный рыночный портфель активов. Где θ – так называемый коэффициент неприятия риска, Тобин доказал свою знаменитую формулу для веса фонда в портфеле максимальной полезностью [6]: wM rM r0. Поскольку данные о стоимости паев индексных фондов, а следовательно и их доходности, известны, то можно смоделировать ex post стратегии вложения в фонды для разных значений пропорций на различных инвестиционных периодах и различных периодах ребалансирования. Целью настоящей работы и было на реальных исторических данных для российских индексных фондов (на основе индекса ММВБ) определить распределение значений оптимальных весов этих фондов для широкого спектра инвестиционных горизонтов и различных периодов ребалансирования

ПРИНЦИП ПОСТРОЕНИЯ ОПТИМАЛЬНЫХ СТРАТЕГИЙ ПОСТОЯННОЙ ПРОПОРЦИИ
Год создания
ОСНОВНОЙ РЕЗУЛЬТАТ ИССЛЕДОВАНИЯ
Оптимальные веса ИП ВТБ
Гистограмма оптимальных весов ИП ВТБ
СПИСОК ЛИТЕРАТУРЫ

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.