Abstract
Abstract We compare multi-epoch sub-arcsecond Very Large Array imaging of the 22 GHz water masers toward the massive protocluster NGC 6334I observed before and after the recent outburst of MM1B in (sub)millimeter continuum. Since the outburst, the water maser emission toward MM1 has substantially weakened. Simultaneously, the strong water masers associated with the synchrotron continuum point source CM2 have flared by a mean factor of 6.5 (to 4.2 kJy) with highly blueshifted features (up to 70 km s−1 from the LSR) becoming more prominent. The strongest flaring water masers reside 3000 au north of MM1B and form a remarkable bow shock pattern whose vertex coincides with CM2 and tail points back to MM1B. Excited OH masers trace a secondary bow shock located ∼120 au downstream. Atacama Large Millimeter Array images of CS (6–5) reveal a highly collimated north–south structure encompassing the flaring masers to the north and the nonflaring masers to the south seen in projection toward the MM3-UCHII region. Proper motions of the southern water masers over 5.3 years indicate a bulk projected motion of 117 km s−1 southward from MM1B with a dynamical time of 170 years. We conclude that CM2, the water masers, and many of the excited OH masers trace the interaction of the high-velocity bipolar outflow from MM1B with ambient molecular gas. The previously excavated outflow cavity has apparently allowed the radiative energy of the current outburst to propagate freely until terminating at the northern bow shock where it strengthened the masers. Additionally, water masers have been detected toward MM7 for the first time, and a highly collimated CS (6–5) outflow has been detected toward MM4.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.