Abstract

Electrogastrographic examination (EGG) is a noninvasive method for an investigation of a stomach slow wave propagation. The typical range of frequency for EGG signal is from 0.015 to 0.15 Hz or (0.015–0.3 Hz) and the signal usually is captured with sampling frequency not exceeding 4 Hz. In this paper a new approach of method for recording the EGG signals with high sampling frequency (200 Hz) is proposed. High sampling frequency allows collection of signal, which includes not only EGG component but also signal from other organs of the digestive system such as the duodenum, colon as well as signal connected with respiratory movements and finally electrocardiographic signal (ECG). The presented method allows improve the quality of analysis of EGG signals by better suppress respiratory disturbance and extract new components from high sampling electrogastrographic signals (HSEGG) obtained from abdomen surface. The source of the required new signal components can be inner organs such as the duodenum and colon. One of the main problems that appear during analysis the EGG signals and extracting signal components from inner organs is how to suppress the respiratory components. In this work an adaptive filtering method that requires a reference signal is proposed. In the present research, the respiratory component is obtained from non standard ECG (NSECG) signal. For purposes of this paper non standard ECG (namely NSECG) is used, because ECG signal was recorded by other than the standard electrodes placement on the surface of the abdomen. The electrocardiographic derived respiration signal (EDR) is extracted using the phenomena of QRS complexes amplitude modulation by respiratory movements. The main idea of extracting the EDR signal from electrocardiographic signal is to obtain the modulating signal. Adaptive filtering is done in the discrete cosine transform domain. Next the resampled HSEGG signal with attenuated respiratory components is low pass filtered and as a result the extended electrogastrographic signals, included EGG signal and components from other inner organs of digestive system is obtained. One of additional features of the proposed method is a possibility to obtain simultaneously recorded signals, such as: non-standard derivation of ECG, heart rate variability signal, respiratory signal, and EGG signal that allow investigating mutual interferences among internal human systems.

Highlights

  • Electrogastrography (EGG) is a technique for non-invasive recording of gastric myoelectrical activity [1,2,3,4]

  • The EGG signals are collected during relatively long time (120–180 min), and the examination is split into three parts: the first a 30-min part before meal, the second (5–10 min)—during a standardized meal, and the third one after the meal

  • A primary goal of this study was to improve the method of new signal components acquisition from stomach surface and to show that during EGG examination simultaneous acquisitions of other signals, such as heart rate variability (HRV) and electrocardiographic derived respiration signal (EDR) are possible

Read more

Summary

Background

Electrogastrography (EGG) is a technique for non-invasive recording of gastric myoelectrical activity [1,2,3,4]. The multichannel classic surface EGG signals are captured by six disposable electrodes placed on the anterior abdominal wall overlying the stomach This technique can be considered as a non-invasive method for investigating the propagation of slow waves in the stomach. In this work a new method for extracting signal components of inner organs of digestive system from the high sampling frequency electrogastrographic signal (HSEGG) is proposed. The proposed method allows obtaining simultaneously recorded signals, such as: EGG, ECG (HRV), and respiration signal and use them to examine mutual interaction without any additional sensors and devices. A primary goal of this study was to improve the method of new signal components acquisition from stomach surface and to show that during EGG examination simultaneous acquisitions of other signals, such as heart rate variability (HRV) and EDR are possible

Methods
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.