Abstract

The extractable hydrokinetic power from an oscillating membrane in standing motion and induced by a water flow and its possible significance with regard energy harvesting is discussed. The main attractiveness of such an energy harvester lies in the possibility of an inexpensive technology able to be used in those water flows which either because limitation of space (narrow channels) or a limited differential pressure drop with the surrounding but yet with a non negligible velocity are not well suited to be turbined. Utilizing a simplified geometrical model, an estimate of the extractable output density power per area of membrane was derived. Preliminary experiments were performed using a rectangular thin rubber membrane and for a typical domestic water intake as source. The experimental data quantitatively agree very well with the theoretical prediction where it was found that for water flows around 2 m/s the output power density from the membrane may be around 30 mW/cm2 of membrane. Additional research and development is required in order to arrive at a reliable practical and commercial design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call