Abstract

Bovine butyrophilin (BTN1A1) is an abundant type I transmembrane glycoprotein exposed on the surface of milk fat globules. We have solved the crystal structure of its extracellular region via multiple wavelength anomalous dispersion after incorporation of selenomethionine into the bacterially produced protein. The butyrophilin ectodomain exhibits two subdomains with immunoglobulin fold, each comprising a β-sandwich with a central disulfide bridge as well as one N-linked glycosylation. The fifth Cys residue at position 193 is unpaired and prone to forming disulfide crosslinks. The apparent lack of a ligand-binding site or receptor activity suggests a function predominantly as hydrophilic coat protein to prevent coagulation of the milk fat droplets. While there is less structural resemblance to members of the human butyrophilin family such as BTN3A, which play a role as immune receptors, the N-terminal bovine butyrophilin subdomain shows surprising similarity to the human myelin oligodendrocyte glycoprotein, a protein exposed on the surface of myelin sheaths. Thus, our study lends structural support to earlier hypotheses of a correlation between the consumption of cow milk and prevalence of neurological autoimmune diseases and may offer guidance for the breeding of cattle strains that express modified butyrophilin showing less immunological cross-reactivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.