Abstract

BackgroundApoptosis is important for normal cerebral cortical development. We previously showed that the Fas suicide receptor was expressed within the developing cerebral cortex, and that in vitro Fas activation resulted in caspase-dependent death. Alterations in cell-surface Fas expression may significantly influence cortical development. Therefore, in the following studies, we sought to identify developmentally relevant cell biological processes that regulate cell-surface Fas expression and reciprocal consequences of Fas receptor activation.ResultsFlow-cytometric analyses identified two distinct neural sub-populations that expressed Fas on their cell surface at high (FasHi) or moderate (FasMod) levels. The anti-apoptotic protein FLIP further delineated a subset of Fas-expressing cells with potential apoptosis-resistance. FasMod precursors were mainly in G0, while FasHi precursors were largely apoptotic. However, birth-date analysis indicated that neuroblasts express the highest levels of cell-surface Fas at the end of S-phase, or after their final round of mitosis, suggesting that Fas expression is induced at cell cycle checkpoints or during interkinetic nuclear movements. FasHi expression was associated with loss of cell-matrix adhesion and anoikis. Activation of the transcription factor p53 was associated with induction of Fas expression, while the gonadal hormone estrogen antagonistically suppressed cell-surface Fas expression. Estrogen also induced entry into S-phase and decreased the number of Fas-expressing neuroblasts that were apoptotic. Concurrent exposure to estrogen and to soluble Fas-ligand (sFasL) suppressed p21/waf-1 and PCNA. In contrast, estrogen and sFasL, individually and together, induced cyclin-A expression, suggesting activation of compensatory survival mechanisms.ConclusionsEmbryonic cortical neuronal precursors are intrinsically heterogeneous with respect to Fas suicide-sensitivity. Competing intrinsic (p53, cell cycle, FLIP expression), proximal (extra-cellular matrix) and extrinsic factors (gonadal hormones) collectively regulate Fas suicide-sensitivity either during neurogenesis, or possibly during neuronal migration, and may ultimately determine which neuroblasts successfully contribute neurons to the differentiating cortical plate.

Highlights

  • Apoptosis is important for normal cerebral cortical development

  • Expression of Fas and related proteins in embryonic cerebral cortical precursors In the initial experiment, we utilized flow cytometric analysis to examine the localization of Fas to the cell surface of freshly isolated embryonic rat (gestational day (GD)-15) cortical neural cells by immuno-labeling for Fas in the absence of detergent

  • Flow cytometric analysis of samples obtained from GD15 rat cortex indicated that 10.69 ± 3.37% of cortical neuronal precursors expressed Fas on their cell surface in vivo on embryonic day 15

Read more

Summary

Introduction

Apoptosis is important for normal cerebral cortical development. We previously showed that the Fas suicide receptor was expressed within the developing cerebral cortex, and that in vitro Fas activation resulted in caspase-dependent death. One generally accepted mechanism that is invoked to explain developmental apoptosis is the competition among neurons for limited supplies of trophic molecules within the environment (reviewed in [11]). According to this model, a neuron's inability to find growth factor support within its environment precedes the initiation of apoptosis. In addition to competing for a limited supply of trophic factors, developing neural progenitors and differentiating neurons may engage in an active killing process whereby 'killer cells' induce apoptosis in 'suicide-receptive' cells, to limit cell number in the brain. It is important to understand the signaling mechanisms and circumstances that regulate cell-suicide receptor expression in the developing brain

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.