Abstract

To understand whether postprandial extracellular Ca(2+) (Ca(o)(2+)) changes were related to intestinal epithelial homeostasis, we performed array analysis on extracellular calcium-sensing receptor (CaSR)-expressing colonic myofibroblasts (18Co cells) and observed increases in bone morphogenetic protein (BMP)-2 transcripts. The present experiments demonstrated that regulated secretion of BMP-2 occurs in response to CaSR activation of these cells and revealed a new property of BMP-2 on the intestinal barrier. Activation by Ca(o)(2+), spermine, GdCl(3), or neomycin sulfate of 18Co cells or primary isolates of myofibroblasts from the normal human colon stimulated both the synthesis (RT-PCR) and secretion (ELISA) of BMP-2. Transient transfection with short interfering RNA against CaSR completely inhibited BMP-2 secretion. Transient transfection with dominant negative CaSR (R185Q) increased the EC(50) of Ca(o)(2+) (5.7 vs. 2.3 mM). Upregulation of BMP-2 transcript and secretion occurring within 3 h of CaSR activation was prevented by actinomycin D. CaSR-mediated BMP-2 synthesis and secretion required phosphatidylinositol 3-kinase activation (as assessed by phospho-Akt generation). Exogenous BMP-2 and conditioned medium from CaSR-stimulated 18Co cells accelerated restitution in wounded postconfluent Caco-2 cells. Exogenous BMP-2 and conditioned medium from CaSR-stimulated 18Co cells increased the transepithelial resistance of low- and high-resistance T-84 epithelial monolayers. CaSR stimulation of T-84 epithelia and colonic myofibroblasts downregulated the BMP family antagonist Noggin, as assessed by RT-PCR and Western blot analysis. Together, our data suggest that the CaSR mediates the effective concentration of BMP-2 in the intestine, which leads to enhanced repair and barrier development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call