Abstract

We examine a general mechanism whereby an extra vector-like quark of mass M eva generates realistic quark mixing angles from otherwise flavor diagonal quark Yukawa matrices. For scales above M eva the vector-like quark is manifest, while the Yukawa matrices are diagonal, i.e., the KM matrix is held in abeyance. Conversely, for scales below M eva the vector-like quark is in an abeyant state, while the KM matrix is manifest. This mechanism is naturally realized in many superstring models. In fact, knowledge of the Yukawa matrices at the string scale, together with suitable renormalization group scaling, unambigously determines the quark mass ratios and the KM angles at low energies. Conversely, these low-energy observables may be used to determine asyet-unknown parameters in the string model. We explicitly apply the EVA mechanism to a toy model inspired by the structure of the flipped SU (5) string model, to illustrate how this mechanism may be used to predict some of the KM angles. We also outline the procedure to be followed in a realistic calculation in the flipped SU (5) string model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.