Abstract
In this article, a new integral equation is derived to solve the exterior problem for the Helmholtz equation with mixed boundary conditions in three dimensions, and existence and uniqueness is proven for all wave numbers. We apply the boundary element collocation method to solve the system of Fredholm integral equations of the second kind, where we use constant interpolation. We observe superconvergence at the collocation nodes and illustrate it with numerical results for several smooth surfaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.