Abstract
The major problem facing olive oil producers each winter campaign, contrary to what is expected, is not whether the harvest will be good or not but whether the sale price will allow them to cover production costs and achieve a reasonable margin of profit or not. The aim of this paper is to study the olive oil price formation mechanisms in order to learn about the traders’ behavior in the olive oil market. We econometrically study the price formation by implementing statistical models and we provide an economic explanation for the stylized facts detected in olive oil price series. For prediction purposes, we use the ANN approach. Our main findings indicate that the AR(1)-GJR(1,1) and the Ornstein-Uhlenbeck process with stochastic volatility model succeeded to some extent in capturing the series stylized facts. The unstable participants’ behavior creates the volatility clustering, non-linearity dependent and cyclicity phenomena. By imitating each other in some periods of the campaign, different participants contribute to the fat tails observed in the olive oil price distribution. The best prediction model for the olive oil price is based on a back propagation ANN approach with input information based on discrete wavelet decomposition and recent price past history.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.