Abstract
AbstractThe method of generalized cross-validation (GCV) provides a good value for the “ridge” regularization parameter for an ill-conditioned linear system, such as the system produced by discretization of a Fredholm integral equation of the first kind. In this note we apply GCV to a wider class of estimators than the one parameter ridge estimators. We observe that the expected values of the parameter mean-square error, the predictive mean-square error, and the GCV function are simultaneously minimized over this new class, so we accept the minimizer of the GCV function as the best computable estimator. We present a simple algorithm for computing this estimator from the data, so that a numerical search is not needed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of the Australian Mathematical Society. Series B. Applied Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.