Abstract
An analytical framework for the extension of solutions to fractional differential equations (FDEs) to the negative half-line is presented in this paper. The proposed technique is based on the construction of a special characteristic equation corresponding to the original FDE (when the characteristic equation does exist). This characteristic equation enables the construction analytic solutions to FDEs are expressed in the form of infinite fractional power series. Necessary and sufficient conditions for the existence of such an extension are discussed in detail. It is demonstrated that the extension of solutions to FDEs to the negative half-line is not a single-valued operation. Computational experiments are used to illustrate the efficacy of the proposed scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.