Abstract

BackgroundNetwork inference is an important tool to reveal the underlying interactions of biological systems. In the liver, a complex system of transcription factors is active to distribute signals and induce the cellular response following extracellular stimuli. Plenty of information is available about single transcription factors important for the different functions of the liver, but little is known about their causal relations to each other.ResultsGiven a DNA microarray time series dataset of collagen monolayers cultured murine hepatocytes, we identified 22 differentially expressed genes for which the corresponding protein is known to exhibit transcription factor activity. We developed the Extended TILAR (ExTILAR) network inference algorithm based on the modeling concept of the previously published TILAR algorithm. Using ExTILAR, we inferred a transcription factor network based on gene expression data which puts these important genes into a functional context. This way, we identified a previously unknown relationship between Tgif1 and Atf3 which we validated experimentally. Beside its known role in metabolic processes, this extends the knowledge about Tgif1 in hepatocytes towards a possible influence of processes such as proliferation and cell cycle. Moreover, two positive (i.e. double negative) regulatory loops were predicted that could give rise to bistable behavior. We further evaluated the performance of ExTILAR by systematic inference of an in silico network.ConclusionsWe present the ExTILAR algorithm, which combines the advantages of the regression based inference algorithm TILAR, like large network sizes processable and low computational costs, with the advantages of dynamic network models based on ordinary differential equation (i.e. in silico knock-down simulations). Like TILAR, ExTILAR makes use of various prior-knowledge types such as transcription factor binding site information and gene interaction knowledge to infer biologically meaningful gene regulatory networks. Therefore, ExTILAR is especially useful when a large number of genes is modeled using a small number of experimental data points.

Highlights

  • Network inference is an important tool to reveal the underlying interactions of biological systems

  • We extend the existing Transcription Factor binding site integrating LARS (TILAR) algorithm that uses a linear network model based on the Least Angle RegreSsion (LARS) algorithm

  • By inferring a transcription factor network (TFN) with Extended TILAR (ExTILAR) using the extracted DETFs, we study their potential roles in the cellular response and identify new causal relations

Read more

Summary

Introduction

Network inference is an important tool to reveal the underlying interactions of biological systems. One of the aims in systems biology is to reveal functions and uncover causalities in the behavior of biological systems As these systems are usually a composition of multiple processes, mathematical modeling is often applied to investigate processes of interest. One biological process of interest is the regulation of gene expression which is mostly influenced by transcription factors (TFs). The target genes, their regulators (TFs) and the relations between these entities constitute a gene regulatory network (GRN) which gives information about the functions of the individual genes. This network is commonly represented as a graph where nodes correspond to the genes and edges are the regulatory relations between them

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call