Abstract

The solar cycle has been defined in terms of a sequential periodic variation in sunspot numbers, the period being the interval between successive minima, currently averaging 11.2 years. But a number of observations have indicated that the activity cycle may begin at higher latitudes before the emergence of the first sunspots of the new cycle. Here we report results from sunspot cycle 21 concerning the ephemeral active regions, the coronal green-line emission and the torsional oscillation signal, which confirm the earlier suggestions. In particular, we report the appearance of a high-latitude population of ephemeral active regions in the declin-ing phase of sunspot cycle 21, with orientations that tend to favour those for cycle 22 rather than 21. Taken together, these data indicate that sunspot activity is simply the main phase of a more extended cycle that begins at high latitudes before the maximum of a given sunspot cycle and progresses towards the equator during the next 18–22 yr, merging with the conventional 'butterfly diagram' (the plot of the latitudes of emerging sunspots against time) as it enters sunspot latitudes. We suggest that this extended cycle may be understood in the perspective of a model of giant convective rolls that generate dynamo waves propagating from pole to equator.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call