Abstract

Saturation decompression is a physiological process of transition from one steady state, full saturation with inert gas at pressure, to another one: standard conditions at surface. It is defined by the borderline condition for time spent at a particular depth (pressure) and inert gas in the breathing mixture (nitrogen, helium). It is a delicate and long lasting process during which single milliliters of inert gas are eliminated every minute, and any disturbance can lead to the creation of gas bubbles leading to decompression sickness (DCS). Most operational procedures rely on experimentally found parameters describing a continuous slow decompression rate. In Poland, the system for programming of continuous decompression after saturation with compressed air and nitrox has been developed as based on the concept of the Extended Oxygen Window (EOW). EOW mainly depends on the physiology of the metabolic oxygen window—also called inherent unsaturation or partial pressure vacancy—but also on metabolism of carbon dioxide, the existence of water vapor, as well as tissue tension. Initially, ambient pressure can be reduced at a higher rate allowing the elimination of inert gas from faster compartments using the EOW concept, and maximum outflow of nitrogen. Then, keeping a driving force for long decompression not exceeding the EOW allows optimal elimination of nitrogen from the limiting compartment with half-time of 360 min. The model has been theoretically verified through its application for estimation of risk of decompression sickness in published systems of air and nitrox saturation decompressions, where DCS cases were observed. Clear dose-reaction relation exists, and this confirms that any supersaturation over the EOW creates a risk for DCS. Using the concept of the EOW, 76 man-decompressions were conducted after air and nitrox saturations in depth range between 18 and 45 meters with no single case of DCS. In summary, the EOW concept describes physiology of decompression after saturation with nitrogen-based breathing mixtures.

Highlights

  • Saturation diving is defined as the situation where one is at depth or pressure for a long enough period of time to have the partial pressures of the dissolved gas in the body at equilibrium with the partial pressure of those in the ambient atmosphere [1]

  • The saturation process and the rate of change in partial pressure depends on the difference between partial pressures of inert gas in an inhaled breathing mixture and dissolved in a body compartment

  • * this step was used only for saturation decompression with compressed air (PiO2 = 0.588 ata), for other breathing mixtures, when PiO2 = 0.5 ata, rate of saturation decompression in this step was already as calculated in Phase 2 of decompression. doi:10.1371/journal.pone.0130835.t002

Read more

Summary

Introduction

Saturation diving is defined as the situation where one is at depth or pressure for a long enough period of time to have the partial pressures of the dissolved gas in the body at equilibrium with the partial pressure of those in the ambient atmosphere [1]. The saturation process and the rate of change in partial pressure depends on the difference between partial pressures of inert gas in an inhaled breathing mixture and dissolved in a body compartment. Mathematically, it is described by the half-time of the exponential process, defined as the time it takes for the compartment to take up 50% of the difference in dissolved gas capacity at a changed partial pressure. After six half-times, every compartment is almost fully saturated (98.44%) [2] From this point, decompression after exposure is the longest one and no longer depends on time at pressure

Objectives
Methods
Results
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.