Abstract

Abstract The extended Melnikov method, which was used to solve autonomous perturbed Hamiltonian systems, is improved to deal with high-dimensional non-autonomous nonlinear dynamical systems. The multi-pulse Shilnikov type chaotic dynamics of a parametrically and externally excited, simply supported rectangular thin plate is studied by using the extended Melnikov method. A two-degree-of-freedom non-autonomous nonlinear system of the rectangular thin plate is derived by the von Karman type equation and the Galerkin approach. The case of buckling is considered for the rectangular thin plate. The extended Melnikov method is directly applied to the non-autonomous governing equations of motion to investigate multi-pulse Shilnikov type chaotic motions of the buckled rectangular thin plate for the first time. The results obtained here indicate that multi-pulse chaotic motions can occur in the parametrically and externally excited, simply supported buckled rectangular thin plate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.