Abstract

The theoretical horopter is an interesting qualitative tool for conceptualizing binocular correspondence, but its quantitative applications have been limited because they have ignored ocular kinematics and vertical binocular sensory fusion. Here we extend the mathematical definition of the horopter to a full surface over visual space, and we use this extended horopter to quantify binocular alignment and visualize its dependence on eye position. We reproduce the deformation of the theoretical horopter into a spiral shape in tertiary gaze as first described by Helmholtz (1867). We also describe a new effect of ocular torsion, where the Vieth-Müller circle rotates out of the visual plane for symmetric vergence conditions in elevated or depressed gaze. We demonstrate how these deformations are reduced or abolished when the eyes follow the modification of Listing's law during convergence called L2, which enlarges the extended horopter and keeps its location and shape constant across gaze directions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.