Abstract

This paper is concerned with the extended Delaunay method as well as the method of integration of the equations, applied to first order resonance. The equations of the transformation of the extended Delaunay method are analyzed in the (p + 1)/p type resonance in order to build formal, analytical solutions for the resonant problem with more than one degree of freedom. With this it is possible to gain a better insight into the method, opening the possibility for more generalized applications. A first order resonance in the first approximation is carried out, giving a better comprehension of the method, including showing how to eliminate the ‘Poincare singularity’ in the higher orders.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.