Abstract

The Shapley value assigns, to each game that is adequately represented by its characteristic function, an outcome for each player. An elaboration on the Shapley value that assigns, to characteristic function games, a “partition function” outcome is broadly established and accepted, but elaborations to encompass games with externalities (represented by partition functions) are not. Here, I show that simultaneous consideration of the two elaborations (“generalization” and “extension”) obtains a unique Shapley-type value for games in partition function form. The key requirement is that the “Extended, Generalized Shapley Value” (EGSV) should be “recursive”: the EGSV of any game should be the EGSV of itself. This requirement forces us to ignore all but the payoffs to bilateral partitions. The EGSV can be conceptualized as the ex ante value of a process of successive bilateral amalgamations. Previous Shapley value extensions, if generalized, are not recursive; indeed, they iterate to the EGSV.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.