Abstract
The study of the piecewise linear differential systems goes back to Andronov, Vitt and Khaikin in 1920’s, and nowadays such systems still continue to receive the attention of many researchers mainly due to their applications. We study the discontinuous piecewise differential systems formed by two linear centers separated by a nonregular straight line. We provide upper bounds for the maximum number of limit cycles that these discontinuous piecewise differential systems can exhibit and we show that these upper bounds are reached. Hence, we solve the extended 16th Hilbert problem for this class of piecewise differential systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.