Abstract

We have shown recently that the expression and function of proneural genes is conserved in chelicerates and myriapods, although groups of neural precursors are specified in the ventral neuroectoderm of these arthropod groups, rather than single cells as in insects and crustaceans. We present additional evidence that the pattern of neurogenesis seen in chelicerates and in previously analyzed myriapod species is representative of both arthropod groups, by analysing the formation of neural precursors in the diplopod Archispirostreptus sp. This raises the question as to what extent the genetic network has been modified to result in different modes of neurogenesis in the arthropod group. To find out which components of the neural genetic network might account for the different mode of neural precursor formation in chelicerates and myriapods, we identified genes in the diplopod Glomeris marginata that are known to be involved in early neurogenesis in Drosophila and studied their expression pattern. In Drosophila, early neurogenesis is controlled by proneural genes that encode HLH transcription factors. These genes belong to two major subfamilies, the achaete-scute group and the atonal group. Different proneural proteins activate both a common neural programme and distinct neuronal subtype-specific target genes. We show that the expression pattern of homologs of the Drosophila proneural genes daughterless, atonal, and Sox B1 are partially conserved in Glomeris mariginata. While the expression of the pan-neural gene snail is conserved in the ventral neuroectoderm of G. marginata, we found an additional expression domain in the ventral midline. We conclude that, although the components of the genetic network involved in specification of neural precursors seem to be conserved in chelicerates, myriapods, and Drosophila, the function of some of the genes might have changed during evolution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.