Abstract

In the present study, we generated a systematic overview of the expression pattern and assembly profile of synaptic membrane proteins in ribbon synapses of the developing mouse retina. Using indirect immunofluorescence microscopy, we analyzed the spatial and temporal distribution of 11 important membrane and membrane-associated synaptic proteins (syntaxin 1/3, SNAP-25, synaptobrevin 2, synaptogyrin, synaptotagmin I, SV2A, SV2B, Rab3A, clathrin light chains, CSP and neuroligin I) during synaptogenesis. The temporospatial distribution of these synaptic proteins was "normalized" by the simultaneous visualization of the synaptic vesicle protein synaptophysin, which served as an internal reference protein. We found that expression of various synaptic membrane proteins started at different time points and changed progressively during development. At early stages of development synaptic vesicle membrane proteins at extrasynaptic locations did not always colocalize with synaptophysin, indicating that these proteins probably do not reside in the same transport vesicles. Despite a non-synchronized onset of protein expression, clustering and colocalization of all synaptic membrane proteins at ribbon synapses roughly occurred in the same time window (between day 4 after birth, P4, and P5). Thus, the basic synaptic membrane machinery is already present in ribbon synapses before the well-known complete morphological maturation of ribbon synapses between P7 and P12. We conclude that ribbon synapse formation is a multistep process in which the concerted recruitment of synaptic membrane proteins is a relatively early event and clearly not the final step.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.