Abstract

The present study was conducted to demonstrate of the immunohistochemical localization of vascular endothelial growth factor (VEGF) and its receptors (flt1/fms, flk1/KDR and flt4) as well as vascular endothelial growth inhibitor (VEGI) and to determine the correlation of VEGF and its receptors and VEGI with serum sex steroids (estrogen and progesterone) in the bovine uterus during the sexual cycle. The stage of the estrous cycle in 30 Holstein cattle was assessed based on the gross and histological appearance of the ovaries and uterus and on blood steroid hormone levels. Tissue samples obtained from the uterus were fixed in 10% formaldehyde for routine histological processing. During both follicular and luteal phases, positive cytoplasmic and membrane staining was achieved for VEGF and its receptors (flt1/fms, flk1/KDR and flt4) as well as VEGI in the luminal and glandular epithelial cells, the connective tissue and smooth muscle cells, and the vascular endothelial cells and smooth muscle cells in the uterus. The intensity, proportional and total scores determined for VEGF and its receptors (flt1/fms and flt4) as well as VEGI were greater in the luminal and glandular epithelial cells compared to the connective tissue and smooth muscle cells (P < 0.05). Furthermore, the number and intensity of the flk1/KDR positive cells were greater among the connective tissue cells compared to the luminal and glandular epithelial cells (P < 0.05). As a result, it was determined that the expression of VEGF and its receptors as well as VEGI in the bovine uterus during the follicular and luteal phases varied with different cell types. This suggests that depending on the stage of the sexual cycle, these factors may mediate the establishment of an appropriate environment for the nutritional supply and implantation of the embryo primarily due to the stimulation of angiogenesis but also through the increase in the secretory activity of the epithelial cells in the uterus. Furthermore, this indicates that ovarian steroid hormones play a significant role in regulating the expression of VEGF and its receptors as well as VEGI.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.