Abstract

Using the lacZ operon fusion technique, the transcriptional control of the Acinetobacter calcoaceticus recA gene was studied. A low (approximately twofold) inductive capacity was observed for compounds that damage DNA and/or inhibit DNA replication, e.g. methyl methanesulfonate, mitomycin C, UV light and nalidixic acid. Induction of the recA gene by DNA damage was independent of functional RecA. The presence of the recA promoter region on a multicopy plasmid had the same effect on recA transcription as the presence of DNA-damaging agents. Thus, recA expression in A. calcoaceticus appears to be regulated in a novel fashion, possibly involving a non-LexA-like repressor. Regulation of the recA gene in A. calcoaceticus appears not to be part of a regulon responsible for competence for natural transformation: in cells exhibiting extremely low transformation frequencies, the level of transcription of the recA gene was found to be comparable to the level found in cells in the state of maximal competence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.