Abstract

Background: Pulmonary hypertension (PH) can cause medial thickening, a hallmark of pulmonary arterial remodeling. The serotonin (5HT) pathway has been suggested as a factor associated with PH by inducing pulmonary arterial smooth muscle cells (SMCs) proliferation, a major cause of medial thickening. This study aims to demonstrate the expression of molecules in the 5HT pathway in the pulmonary artery of dogs affected with PH secondary to degenerative mitral valve disease (DMVD) compared to DMVD and healthy control dogs.Materials and Methods: The study included lung samples from the carcasses of 19 older small-breed dogs (Control n = 5, DMVD n = 7, DMVD+PH n = 7). Lung tissue sections were performed Hematoxylin and Eosin staining for measuring the percentage of medial thickness and immunohistochemistry for evaluating the expression of proteins in the 5HT pathway including serotonin transporter (SERT), serotonin 2A receptor (5HT2A), tryptophan hydroxylase 1 (TPH1), extracellular regulated kinase 1/2 (ERK1/2), and phosphorylated ERK1/2 (pERK1/2).Results: Medial thickening of the pulmonary arteries was found in the DMVD and DMVD+PH groups compared to the control. The medial thickening of the DMVD+PH group was increased significantly compared to that in the DMVD group. Intracytoplasmic expression of proteins related to the 5HT pathway was mainly presented in the medial layer of the pulmonary arteries. The control group showed a low expression of proteins related to the 5HT pathway. An intensive expression of SERT, 5HT2A, TPH1, and ERK1/2 protein was seen in the DMVD and DMVD+PH groups. Interestingly, pERK1/2 was strongly represented only in the DMVD+PH group.Conclusions: Overexpression of proteins related to the 5HT pathway including SERT, 5HT2A, TPH1, ERK1/2, and pERK1/2 was associated with medial remodeling in dogs affected with secondary to DMVD.

Highlights

  • Pulmonary hypertension (PH) has been defined as an abnormal increase in pulmonary arterial pressure (PAP)

  • This study aimed to demonstrate the expression of proteins related to the 5HT pathway in the pulmonary artery of dogs affected with PH secondary to degenerative mitral valve disease (DMVD) compared to DMVD and healthy control dogs

  • Dogs in the degenerative mitral valve disease with pulmonary hypertension (DMVD+PH) group had to have an intermediate to high probability of PH secondary to DMVD evaluated by estimated PAP and anatomic structural changes assessed by echocardiography (Figure 1) [4, 29]

Read more

Summary

Introduction

Pulmonary hypertension (PH) has been defined as an abnormal increase in pulmonary arterial pressure (PAP). Several causes can mediate PH in dogs Among these causes, left heart disease is suggested as being the most common cause of PH in dogs [1,2,3,4]. Degenerative mitral valve disease (DMVD) is a common left heart disease in older small-sized breed dogs. It is a progressive disease of valve degeneration that impacts cardiovascular hemodynamics. Pulmonary hypertension (PH) can cause medial thickening, a hallmark of pulmonary arterial remodeling. The serotonin (5HT) pathway has been suggested as a factor associated with PH by inducing pulmonary arterial smooth muscle cells (SMCs) proliferation, a major cause of medial thickening. This study aims to demonstrate the expression of molecules in the 5HT pathway in the pulmonary artery of dogs affected with PH secondary to degenerative mitral valve disease (DMVD) compared to DMVD and healthy control dogs

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.