Abstract
In the corpus luteum (CL), blood vessels develop, stabilize, and regress. This process depends on the ratio of pro- and antiangiogenic factors, which change during the ovarian cycle. The present study focuses on the possible roles of 23,000 (23K) prolactin (PRL) in the bovine CL and its antiangiogenic NH(2)-terminal fragments after extracellular cleavage by cathepsin D (Cath D). PRL RNA and protein were demonstrated in the CL tissue, in luteal endothelial cells, and in steroidogenic cells. Cath D was detected in CL tissue, cell extracts, and corresponding cell supernatants. In the intact CL, 23K PRL levels decreased gradually, whereas Cath D levels concomitantly increased between early and late luteal stages. In vitro, PRL cleavage occurred in the presence of acidified homogenates of CL tissue, cells, and corresponding cell supernatants. Similar fragments were obtained with purified Cath D, and their appearance was inhibited by pepstatin A. The aspartic protease specific substrate MOCAc-GKPILF~FRLK(Dnp)-D-R-NH(2) was cleaved by CL cell supernatants, providing further evidence for Cath D activity. The 16,000 PRL inhibited proliferation of luteal endothelial cells accompanied by an increase in cleaved caspase-3. In conclusion, 1) the bovine CL is able to produce PRL and to process it into antiangiogenic fragments by Cath D activity and 2) PRL cleavage might mediate angioregression during luteolysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Endocrinology and Metabolism
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.