Abstract

Pikeperch (Sander lucioperca) has become a species of interest in aquaculture. It is a popular and economically valuable food fish and can produce high numbers of offspring. However, during early development, there are transition phases when high mortality rates concur with growth changes, vital organ transformations and a limited energy budget. Up to now, no study focused on the developmental adaption of muscle tissue in pikeperch, regardless of muscle tissue influencing essential traits such as locomotion and thus the competence to hunt prey and avoid predators. In the present study, therefore, the developmental myogenesis of pikeperch was analysed using specimens from early embryonic to larval development. Myogenic and developmental genes were utilized to gain insights into transcriptomic regulation during these stages by applying a nanofluidic qPCR approach. Result, three phases of myogenic gene expression, during somitogenesis, during the late embryonic development and during the larval development were detected. Increased myostatin expression showed an interim arrest of muscle formation between embryonic and larval myogenesis. Expression patterns of satellite cell gene markers indicated an accumulation of stem cells before myogenesis interruption. The here gained data will help to broaden the knowledge on percid myogenesis and can support pikeperch rearing in aquaculture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.