Abstract

While it is known that mice lacking melanocortin 4 receptor (MC4R) expression develop hyperphagia resulting in early-onset obesity, the specific neural circuits that mediate this process remain unclear. Here, we report that selective restoration of MC4R expression within dopamine-1 receptor-expressing neurons [MC4R/dopamine 1 receptor (D1R) mice] partially blunts the severe obesity seen in MC4R-null mice by decreasing meal size, but not meal frequency, in the dark cycle. We also report that both acute cocaine-induced anorexia and the development of locomotor sensitization to repeated administration of cocaine are blunted in MC4R-null mice and normalized in MC4R/D1R mice. Neuronal retrograde tracing identifies the lateral hypothalamic area as the primary target of MC4R-expressing neurons in the nucleus accumbens. Biochemical studies in the ventral striatum show that phosphorylation of DARPP-32(Thr) (-34) and GluR1(Ser) (-845) is diminished in MC4R-null mice after chronic cocaine administration but rescued in MC4R/D1R mice. These findings highlight a physiological role of MC4R-mediated signaling within D1R neurons in the long-term regulation of energy balance and behavioral responses to cocaine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.