Abstract
The Daurian ground squirrel (Spermophilus dauricus) accumulates large amounts of body fat during pre-hibernation fattening. Leptin, an adipose-derived hormone, plays important roles in energy balance and thermogenesis. We predicted that body fat accumulation would lead to the elevation of leptin concentration while its effect on satiety would be suppressed in hypothalamus during fattening. In addition, the uncoupling protein 1 (UCP1) in brown adipose tissue (BAT) would increase and correlated positively with leptin concentration before hibernation. Here, we measured serum leptin concentration and leptin mRNA in white adipose tissue (WAT), hypothalamic neuropeptides involved in energy regulation and UCP1 in BAT before, during and after fattening in squirrels. The fat mass gradually increased during fattening but serum leptin increased mainly in the late phase of fattening, which was consistent with leptin mRNA expression in WAT. During fattening, the mRNA of hypothalamic leptin receptor was up-regulated and correlated positively with serum leptin. Orexigenic neuropeptide Y mRNA increased by 67%; however agouti-related peptide remained unchanged before hibernation. There was no significant change in anorexigenic neuropeptide mRNA. No change in suppressor of cytokine signaling-3 and protein tyrosine phosphatase-1B was detected. UCP1 mRNA expression and protein content in BAT increased significantly after fattening. These changes were independent of environmental conditions and serum leptin concentration. Our results suggest that the dissociation of leptin production and adiposity during fattening may facilitate fat accumulation. No evidence of suppressed leptin signal was found in fattening squirrels. The UCP1 recruitment in post-fattening squirrels could occur without winter-like acclimation and increased leptin.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.