Abstract
Over the past three decades many techniques for expressing exogenous genes in a variety of cells and cell lines have been developed. Exogenous gene expression in macrophages has lagged behind that of other nonhematopioetic cells. There are many reasons for this, but most are due to technical difficulties associated with transfecting macrophages. As professional phagocytes, macrophages are endowed with many potent degradative enzymes that can disrupt nucleic acid integrity and make gene transfer into these cells an inefficient process. This is especially true of activated macrophages which undergo a dramatic change in their physiology following exposure to immune or inflammatory stimuli. Viral transduction of these cells has been hampered because macrophages are end-stage cells that generally do not divide; therefore, some of the vectors that depend on integration into a replicative genome have met with limited success. Furthermore, macrophages are quite responsive to "danger signals," and therefore several of the original viral vectors that were used for gene transfer induced potent anti-viral responses in these cells making these vectors inappropriate for gene delivery. Many of these difficulties have been largely overcome, and relatively high efficiency gene expression in primary human or murine macrophages is becoming more routine. In the present chapter we discuss some of the gene expression techniques that have met with success and review the advantages and disadvantages of each.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.