Abstract
Throughout the reproductive life of women, cumulus cells (CC) protect the dormant oocyte from damage, act as sensors of the follicular microenvironment, and act as a gatekeeper for oocyte developmental potential. One such mechanism relies on the hypoxia-tolerance response, which, with age, decreases systematically, including in the ovary. We aimed to evaluate the association between gene expression related to hypoxia and aging in CC and reproductive results in in vitro fertilization cycles. We recruited 94 women undergoing controlled ovarian stimulation. Total RNA was extracted from pooled CCs collected after oocyte pick-up (OPU) and reverse-transcribed to complementary DNA using random hexamers to test 14 genes related to hypoxia response via HIF1α activation, oxidative stress, and angiogenic responses. The expression of CLU, NOS2, and TXNIP had a positive correlation with age (rs = 0.25, rs = 0.24, and rs = 0.35, respectively). Additionally, NOS2 and HMOX1 expression correlated positively with the retrieval of immature oocytes (rs = 0.22 and rs = 0.40, respectively). Moreover, VEGFC levels decreased overall with increasing fertilization rate, independently of age (rs = -0.29). We found that the fertilization potential of a cohort of oocytes is related to the ability of CC to respond to oxidative stress and hypoxia with age, pointing at NOS2, HMOX1, and VEGFC expression as markers for oocyte maturation and fertilization success.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.