Abstract

The transferrin receptor (TfR) of Trypanosoma brucei is a heterodimer attached to the surface membrane by a glycosylphosphatidylinositol (GPI) anchor. The TfR is restricted to the flagellar pocket, a deep invagination of the plasma membrane. The membrane of the flagellar pocket and the rest of the cell surface are continuous, and the mechanism that selectively retains the TfR in the pocket is unknown. Here, we report that the TfR is retained in the flagellar pocket by a specific and saturable mechanism. In bloodstream-form trypanosomes transfected with the TfR genes, TfR molecules escaped flagellar pocket retention and accumulated on the entire surface, even at modest (threefold) overproduction levels. Similar surface accumulation was observed when the TfR levels were physiologically upregulated threefold when trypanosomes were starved for transferrin. These results suggest that the TfR flagellar pocket retention mechanism is easily saturated and that control of the expression level is critical to maintain the restricted surface distribution of the receptor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.