Abstract

Signaling events mediate many processes that act during embryogenesis to initiate the program of early development. Within the cell many of these changes are mediated through the activation or inactivation of kinases and phosphatases. Protein kinase C (PKC) is one kinase that has been shown to be involved in at least two developmental transitions during early development, fertilization and embryonic compaction. PKC is a family of kinases whose various isotypes have differing requirements for activation of the kinase that include the availability of calcium, diacylglycerol, and negatively charged phospholipids. The presence of more than one isotype in an egg or blastomere of the embryo would provide the possibility that different isotypes mediate distinct signaling pathways in the cells. To address this possibility the different isotypes of PKC were examined at the mRNA and protein levels during preimplantation development in the mouse. Our results demonstrate that seven isotypes of PKC are present during preimplantation development in mouse, some are of maternal origin and others appear after fertilization. Two isotypes have a stage-dependent nuclear localization. In addition, within each blastomere PKC isotypes occupy different subcellular locations in a stage-dependent fashion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.