Abstract

Let ( X,cal X,μ) be a measure space, and let cal M (X,cal X,μ) denote the set of the μ -almost surely strictly positive probability densities. It was shown by Pistone and Sempi in 1995 that the global geometry on cal M (X,cal X,μ) can be realized by an affine atlas whose charts are defined locally by the mappings cal M (X,cal X,μ)⊃cal U p∋q↦log(q/p)+K(p,q)∈B p , where cal U p is a suitable open set containing p , K (p,q) is the Kullback--Leibler relative information and B p is the vector space of centred and exponentially ( p⋅μ) -integrable random variables. In the present paper we study the transformation of such an atlas and the related manifold structure under basic transformations, i.e. measurable transformation of the sample space. A generalization of the mixed parametrization method for exponential models is also presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.