Abstract
We discuss main mechanisms of the exponential localization of the eigenfunctions for one-dimensional quasi-periodic Schrödinger operators with the potential of the form V(α + nω), where V(α) is a non-degenerate C2-function on the d-dimensional torus, and ω ∈ ℝd is a typical vector with rationally incommensurate components. The exponential localization is proved so far for d ≤ 2. We emphasize the different nature of the support of the spectral measure for d = 1 and for d > 1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.