Abstract

Grubbs and Weaver (1947) suggest a minimum-variance unbiased estimator for the population standard deviation of a normal random variable, where a random sample is drawn and a weighted sum of the ranges of subsamples is calculated. The optimal choice involves using as many subsamples of size eight as possible. They verified their results numerically for samples of size up to 100, and conjectured that their “rule of eights” is valid for all sample sizes. Here we examine the analogous problem where the underlying distribution is exponential and find that a “rule of fours” yields optimality and prove the result rigorously.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.