Abstract

A calculus for classical propositional sequents is introduced that consists of a restricted version of the cut rule and local variants of the logical rules. Employed in the style of proof search, this calculus explodes a given sequent into its elementary structural sequents—the topmost sequents in a derivation thus constructed—which do not contain any logical constants. Some of the properties exhibited by the collection of elementary structural sequents in relation to the sequent they are derived from, uniqueness and unique representation of formula occurrences, will be discussed in detail. Based on these properties it is suggested that a collection of elementary structural sequents constitutes the purely structural representation of the sequent from which it is obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.